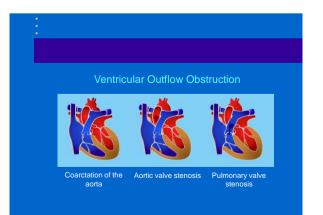

# Long Term Clinical Outcomes of Paediatric Congenital Heart Disease


#### Yiu-fai CHEUNG MD, FRCP

Bryan Lin Professor in Paediatric Cardiology Department of Paediatrics and Adolescent Medicine LKS Faculty of Medicine The University of Hong Kong



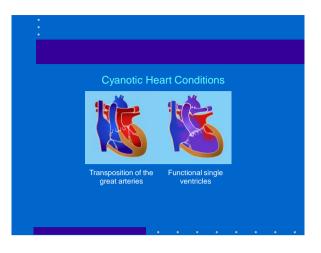


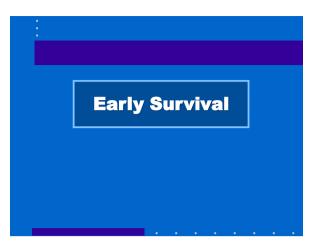


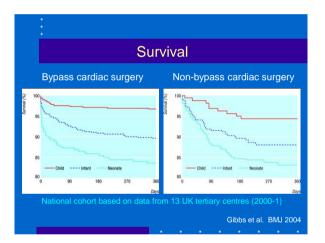


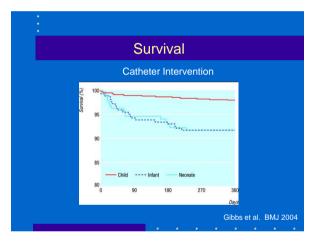
Cyanotic Heart Conditions

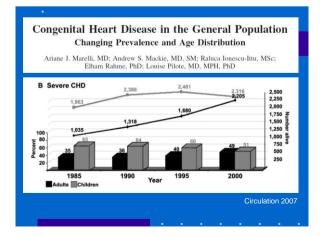


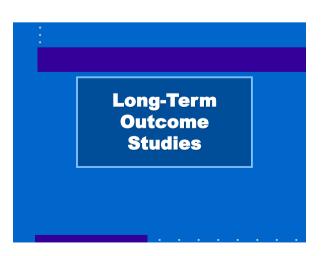




Tetralogy of Fallot


Pulmonary atresia with ventricular septal defect


Pulmonary atresia with intact ventricular septum



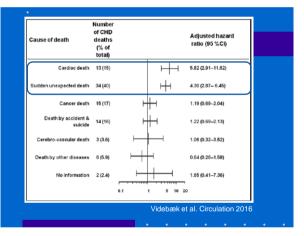


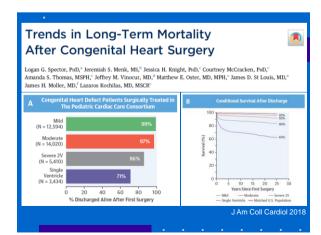










#### Long-Term Nationwide Follow-Up Study of Simple **Congenital Heart Disease Diagnosed in Otherwise Healthy Children**

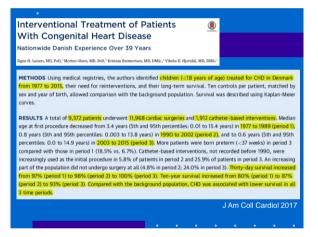

Jørgen Videbæk, MD, DMSci; Henning Bækgaard Laursen, MD, DMSci; Morten Olsen, MD, PhD; Dan Eik Høfsten, MD, PhD; Søren Paaske Johnsen, MD, PhD

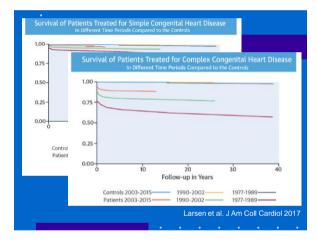
- 1241 simple CHD diagnosed from 1963 to 1973
- Danish public registries
  10 age- and sex-matched general population controls per patient

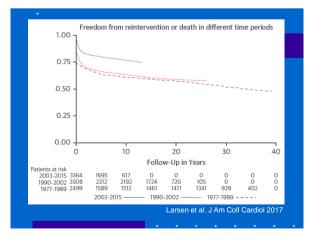
  26% of patients had operation <15y</li>

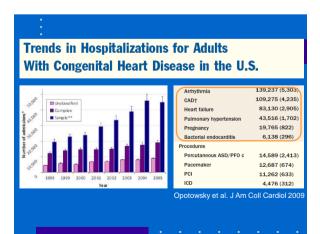
|                           | Number of<br>deaths<br>(pct) | Mortality per<br>1,000 patient-<br>years |              | adjusted<br>Hazard ratio<br>(95 % CI) |
|---------------------------|------------------------------|------------------------------------------|--------------|---------------------------------------|
| All CHD                   | 86 (100)                     | 2.16                                     | ⊢⊷⊣          | 1.87 (1.49 – 2.36)                    |
| Atrial septal defect      | 16 (18.6)                    | 2.17                                     | <b>→</b>     | 1.71 (1.01 – 2.90)                    |
| Patent ductus arteriosus  | 19 (22.1)                    | 2.06                                     | <b>⊢</b> →→  | 1.83 (1.12 – 2.99)                    |
| Pulmonary stenosis        | 10 (11.6)                    | 2.09                                     | <b>⊢</b> +i  | 1.51 (0.77 – 2.94)                    |
| Ventricular septal defect | 41 (47.7)                    | 2.23                                     | <b>→→</b>    | 2.08 (1.48 – 2.92)                    |
| Female                    | 38 (44.1)                    | 1.63                                     | <b>⊢</b> ⊷⊣  | 1.84 (1.30 - 2.60)                    |
| Male                      | 48 (55.9)                    | 2.92                                     | <b>⊢</b> ⊷⊣  | 1.89 (1.39 – 2.57)                    |
| Born ≤ 1958               | 35 (40.7)                    | 2.31                                     | <b>—</b> •—1 | 1.45 (1.01-2.06)                      |
| Born 1959-1963            | 37 (43.0)                    | 2.43                                     | <b>⊢</b> •−1 | 2.49 (1.73-3.57)                      |
| Born 1964-1973            | 14 (16.3)                    | 1.49                                     | <b>⊢</b>     | 1.99 (1.12-3.57)                      |

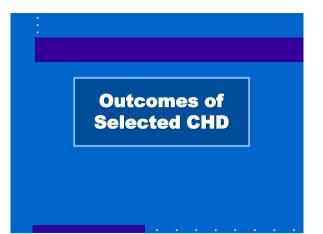


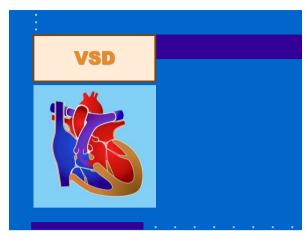




#### Why an increase in risk in 'simple' CHDs?


- · even small volume shunt may not be insignificant cardiac surgery and/or catheter intervention is associated with ventricular dysfunction, valve dysfunction and arrhythmia
- · associated syndrome and other congenital defects


| Patient Characteristics<br>All CHD | SMR (95% CI)<br>8.3 (8.0-8.7) | 1       |         | •      |        |        |    |
|------------------------------------|-------------------------------|---------|---------|--------|--------|--------|----|
| No Chromosomal<br>Abnormalities    | 7.5 (7.2-7.8)                 |         |         | •      |        |        |    |
| Male                               | 7.2 (6.8-7.6)                 | 1       |         | 10     |        |        |    |
| Female                             | 10.5 (9.9-11.2)               |         |         |        |        |        | _  |
| Mild                               | 4.3 (3.7-5.0)                 |         | H       |        |        |        | ٦  |
| Moderate                           | 5.8 (4.2-7.9)                 | 1       |         | 101    |        |        |    |
| Severe 2V                          | 12.4 (11.5-13.4)              | 1       |         |        | HEH    |        |    |
| Single Ventricle                   | 35.0 (33.0-38.0)              |         |         |        |        | 194    | J  |
|                                    | 0.5                           | 1 2     | 4       | 8      | 16     | 32     | (  |
|                                    |                               | Spector | r et al | . J Am | Coll C | ardiol | 20 |
|                                    |                               |         |         |        |        |        |    |
|                                    |                               | Specio  | eta     | . J Am | Coll C | aruioi | 20 |


| 3 | Major Two Ventricle Lesions | SMR (95% CI)     |     |     |         |     |     |    |   |
|---|-----------------------------|------------------|-----|-----|---------|-----|-----|----|---|
|   | PDA                         | 3.4 (2.7-4.2)    |     |     | <b></b> |     |     |    |   |
|   | ASD                         | 3.1 (2.6-3.6)    |     |     |         |     |     |    |   |
|   | VSD (Simple)                | 4.7 (4.0-5.5)    |     |     |         |     |     |    |   |
|   | CAVC (Simple)               | 17.0 (15.0-19.0) | 6   |     |         |     | Her |    |   |
|   | PS/Sub-PS                   | 4.2 (2.9-6.1)    |     |     |         | -   |     |    |   |
|   | TOF                         | 8.2 (7.1-9.4)    |     |     |         | Her |     |    |   |
|   | AS/Sub-AS                   | 4.8 (3.8-6.0)    |     |     |         | 4   |     |    |   |
|   | CoA                         | 4.3 (3.7-5.0)    |     |     | н       |     |     |    |   |
|   | TAPVR                       | 5.8 (4.2-7.9)    |     |     | -       |     |     |    |   |
|   | d-TGA (Simple)              | 5.5 (4.4-6.8)    |     |     | H       |     |     |    |   |
|   |                             |                  | 0.5 | 1 2 | 4       | 8   | 16  | 32 | 6 |
|   |                             |                  |     |     | SN      | MR  |     |    |   |



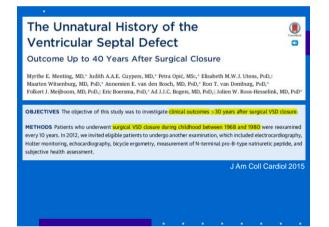


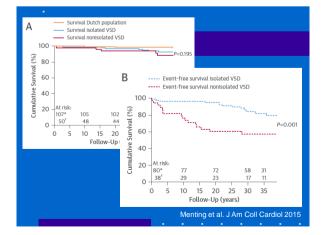


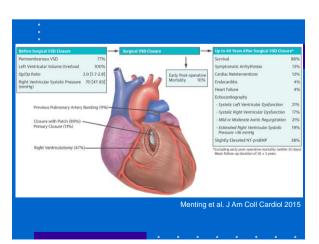




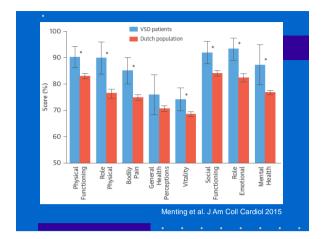


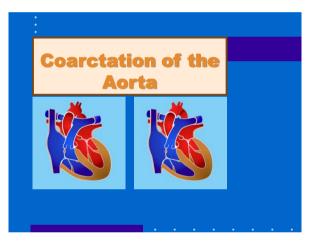


 

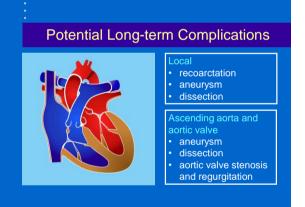

 Long-Term Outcome of Patients With Ventricular Septal Defect Considered Not to Require Surgical Closure During Childhood


 Mad M. Gabriel, MD,\* Maria Heger, MD,\* Perta Innerhörer, MD,\* Marife Zehetgruber, MD,\* Gerald Mundigler, MD,\* Maria Winner, MD,\* Gerald Maurer, MD. FACC.\*

 **ISUTS** Formaria Winner, MD, \* Carling Maurer, MD, \* Dera Innerhörer, MD,\* Marie Veger, MD,\* Gerald Mundigler, MD,\* Maria Winner, MD,\* Gerald Maurer, MD. FACC.\*


 **ISUTS** Formaria winner, MD, \* Gerald Maurer, MD,\* Maria Beger, MD,\* Sontanceuw, MD,\* Gerald Maurer, MD,\* Maria Beger, MD,\* Sontanceuw, MD,\* Bourer, Washer, MD,\* Sontanceuw, MD,\* Gerald Mundigler, MD,\* Maria Beger, MD,\* Sontanceuw, MD,\* So






| First Decade                          |   | Second Decade                           |   |
|---------------------------------------|---|-----------------------------------------|---|
| Residual VSD                          | 2 | Resection aortic (re)coarctation        | 3 |
| Resection pulmonary stenosis          | 2 | Balloon dilation aortic (re)coarctation | 2 |
| Resection aortic coarctation          | 1 | Residual VSD                            | 1 |
| Resection subvalvular aortic stenosis | 1 | Surgery for restenosis aortic valve     | 1 |
| Closure patent ductus arteriosus      | 1 | Aortic root replacement                 | 1 |
| False aneurysm ascending aorta        | 1 | Aortic valve replacement                | 1 |
| Closure sternal dehiscence            | 1 | Pulmonary valve replacement             | 1 |
|                                       |   | Balloon dilation pulmonary stenosis     | 1 |
| Third Decade                          |   | Fourth Decade                           | _ |
| Bentall procedure                     | 1 | Stenting aortic recoarctation           | 1 |
|                                       |   | Aortic valve replacement                | 1 |
|                                       |   | Mitral valve replacement                | 1 |
|                                       |   | Menting et al. J Am Coll Cardiol        |   |

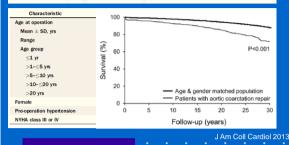




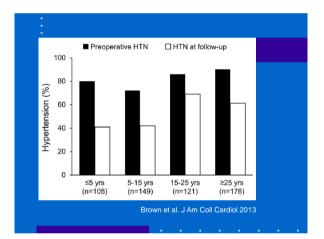


# Mayo Clinic experience

Retrospective analysis of 646 patients


- isolated operative repair of aortic coarctation from 1946-1981
- operations
- end-to-end anastomosis in 87% - use of prosthetic materials or subclavian artery flap in 13%
- followed for a median duration of 20 years

Cohen et al. Circulation 1989


| Percent<br>surviving | 100<br>(432)<br>80 91% (259)<br>84% (59)<br>60 72%             |                   |             |
|----------------------|----------------------------------------------------------------|-------------------|-------------|
|                      | Cause of death                                                 | п                 | %           |
|                      | Coronary artery disease                                        | 32                | 37          |
|                      | Sudden death                                                   | 11                | 13          |
|                      | Heart failure                                                  | 8                 | 9           |
|                      | Cerebrovascular accident                                       | 6                 | 7           |
|                      | Ruptured aortic aneurysm                                       | 6                 | 7           |
|                      | Perioperative death after<br>subsequent cardiovascular surgery | 6                 | 7           |
|                      | Other                                                          | 18                | 20          |
|                      | Total                                                          | 87                | 100         |
|                      | С                                                              | ohen et al. Circi | ulation 198 |

#### **Coarctation of the Aorta**

Lifelong Surveillance Is Mandatory Following Surgical Repair Morgan L. Brown, MD, PHD,\* Harold M. Burkhart, MD,\* Heidi M. Connolly, MD,† Joseph A. Dearani, MD,\* Frank Cetta, MD,†‡ Zhuo Li, MS,§ William C. Oliver,|| Carole A. Warnes, MD,† Hartzell V. Schaff, MD\*

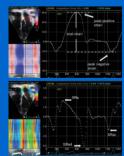


|                                  | 100  |     | Reoperation or Re-intervention Type                                                | No. of Interventions |
|----------------------------------|------|-----|------------------------------------------------------------------------------------|----------------------|
|                                  |      |     | Coarctation re-intervention                                                        |                      |
|                                  | 80 - |     | Surgical                                                                           | 40                   |
| %)<br>ø                          |      |     | Catheter based                                                                     | 13                   |
| Survival-free of reoperation (%) | 60 - |     | Aortic valve replacement                                                           | 52                   |
| fi F                             |      |     | Aortic valve repair                                                                | 17                   |
| ėra                              | 40 - |     | Coronary artery bypass grafting                                                    | 13                   |
| Ηğ                               |      |     | Mitral valve replacement                                                           | 10                   |
| ທ <u>ຄ</u>                       | 20 - |     | Ascending aneurysm repair                                                          | 8                    |
|                                  |      |     | Mitral valve repair                                                                | 6                    |
|                                  | 0    |     | Descending aortic aneurysm                                                         | 5                    |
|                                  | 0    | 5   | Aortic dissection                                                                  | 2                    |
| ≤5                               | 189  | 140 | Other (maze, ASD/PFO, pericardiectomy,<br>subclavian aneurysm, subaortic stenosis) | 9                    |
| >5                               | 613  | 482 | Total                                                                              | 175                  |



### **Aortic Arch Geometry**

Gothic geometry and resting hypertension Ou et al. Eur Heart J 2004

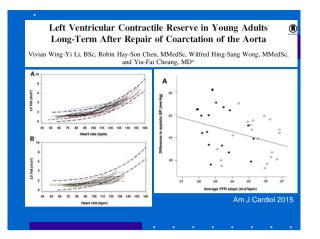

- Disturbance of fluid dynamics in the ascending aorta
- Changes in arterial pressure wave
- propagation Potential baroreceptor dysfunction when the transverse arch is shortened or absent

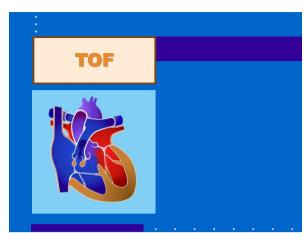


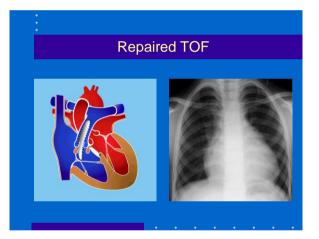
#### Arterial-left ventricular-left atrial coupling late after repair of aortic coarctation and interruption

Vivian Wing-yi Li and Yiu-fai Cheung\*

carotid arterial stiffness ↑ carotid IMT altered LV strain and strain rate in three dimensions altered LV tosional deformation Reduced atrial deformation Eur Heart J Cardiovasc Imaging 2015

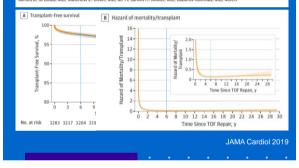




### **Bicuspid Aortic Valve**


- found in 50-80% of patients of CoA (vs 1-2% of normal population)
- accelerated degeneration of the aortic media complications will develop
- in ≥33% of patients with bicuspid aortic valve associated with aortic
- dilation, aneurysms, and dissection



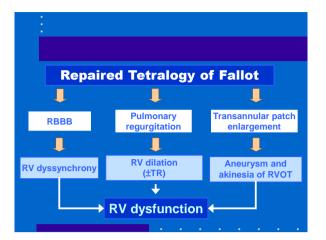
Fedak et al. Circulation 2002

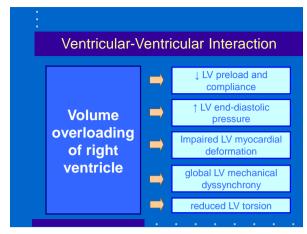


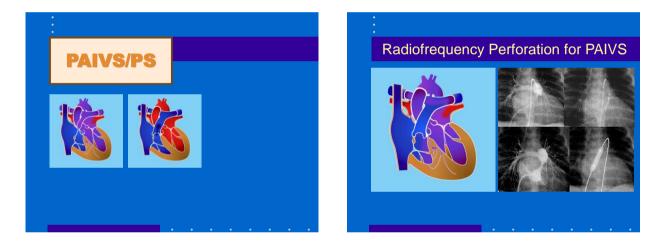


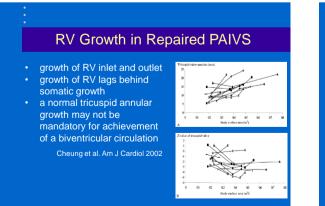


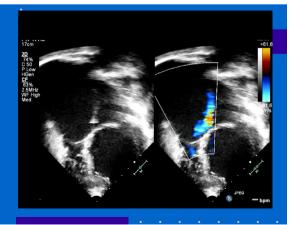


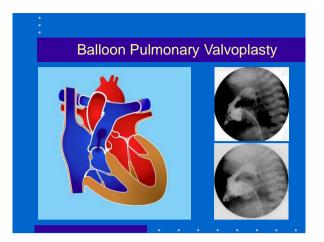

Long-term Outcomes of Tetralogy of Fallot A Study From the Pediatric Cardiac Care Consortium

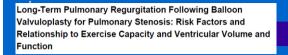

Clayton A. Smith, MD: Courtney McCracken, PhD: Amanda S. Thomas, MSPH: Logan G. Spector, PhD: James D. St Louis, MD: Matthew E. Oster, MD. MPH: James H. Moller, MD. Lazaros Kochilas, MD, MSCR



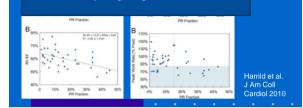





| :                                       |                               |
|-----------------------------------------|-------------------------------|
| Underlying Cause of Death               | No. (%)                       |
| Congenital heart disease                | 63 (43.45)                    |
| Disease of the circulatory system       | 22 (15.17)                    |
| Miscellaneous                           | 19 (13.1)                     |
| External causes of injury and poisoning | 16 (11.03)                    |
| Other congenital malformations          | 10 (6.9)                      |
| Respiratory diseases                    | 8 (5.52)                      |
| Infections                              | 2 (1.38)                      |
| Neoplasms                               | 5 (3.45)                      |
|                                         | Smith et al. JAMA Cardiol 201 |



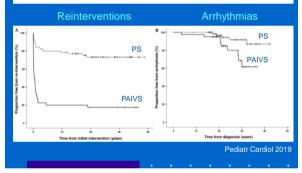





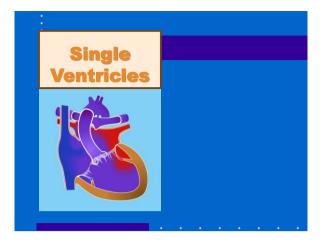


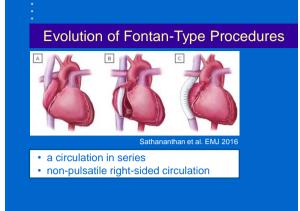


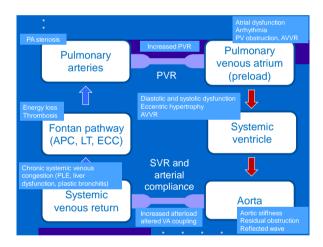




34% had PRF >15%; 17% had PRF >30%
PRF was related to larger balloon: annulus ratio and younger age at intervention

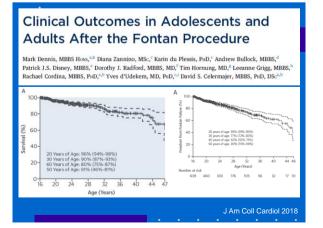



Right and left ventricular mechanics and interaction late after balloon valvoplasty for pulmonary stenosis Li et al. Eur Heart J Cardiovasc Imaging. 2014 Fifty-Five Years Follow-Up of 111 Adult Survivors After Biventricular Repair of PAIVS and PS Julia Zhuo Shi<sup>1</sup> · Pak-cheong Chow<sup>1</sup> · Wenzi Li<sup>1</sup> · Sit-yee Kwok<sup>1</sup> · Wilfred Hing-sang Wong<sup>1</sup> · Yu-fai Cheung<sup>1</sup> Pediatr Cardiol 2019 Fifty-Five Years Follow-Up of 111 Adult Survivors After Biventricular Repair of PAIVS and PS


Julia Zhuo Shi<sup>1</sup> · Pak-cheong Chow<sup>1</sup> · Wenxi Li<sup>1</sup> · Sit-yee Kwok<sup>1</sup> · Wilfred Hing-sang Wong<sup>1</sup> · Yiu-fai Cheung<sup>1</sup>💿

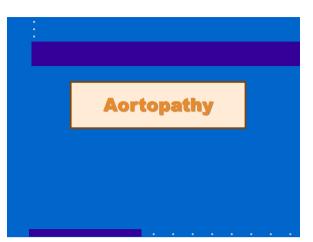


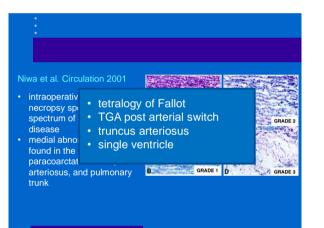

| Cardiac<br>diagnosis | Age at diag-<br>nosis (year) | Type of arrhythmias                                    | Management                                                         |  |
|----------------------|------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|--|
| PAIVS                |                              |                                                        |                                                                    |  |
| 1                    | 28.3                         | IART/atrial fibrillation                               | DC cardioversion<br>PVR, TV repair, and cryoablation<br>amiodarone |  |
| 2                    | 3.5<br>7.3                   | IART second degree heart block after<br>Maze operation | Modified Maze operation<br>Pacemaker implantation                  |  |
| 3                    | 20.9                         | IART                                                   | Transcatheter ablation                                             |  |
|                      | 23.8                         | IART                                                   | Diltiazem<br>Metoprolol<br>Warfarin                                |  |
| 5                    | 17.2<br>19.8                 | IART atrial fibrillation                               | DC cardioversion metoprolol warfarin                               |  |
| 6                    | 20.6                         | AVJRT                                                  | Transcatheter ablation verapamil                                   |  |
| 7                    | 20.6                         | AVJRT                                                  | Transcatheter ablation                                             |  |
| 8                    | 28.6                         | Lown's grade IVb PVC                                   | -                                                                  |  |
| 9                    | 30.0                         | Lown's grade IVb PVC                                   | -                                                                  |  |
| PS                   |                              |                                                        |                                                                    |  |
| 1                    | 24.6                         | Sinus node dysfunction                                 | -                                                                  |  |
| 2                    | 42.3<br>45.9                 | Lown's grade IVa PVC<br>IART/ atrial fibrillation      | Sotalol                                                            |  |
| 3                    | 18.9                         | Idiopathic left posterior fascicular VT                | Transcatheter ablation                                             |  |
| 4                    | 21.1                         | Lown's grade IVa PVC                                   | -                                                                  |  |
| 5                    | 17.0                         | Lown's grade IVa PVC                                   | -                                                                  |  |
| 6                    | 32.2                         | Lown's grade IVa PVC                                   | -                                                                  |  |
|                      |                              | 01-                                                    | et al. Pediatr Cardiol 2019                                        |  |


| Cardiac<br>diagnosis | Neurodevelopmental problems                     | Relationship to<br>intervention | Management and outcome                                        |
|----------------------|-------------------------------------------------|---------------------------------|---------------------------------------------------------------|
| PAIVS                |                                                 |                                 |                                                               |
| 1                    | Left middle cerebral artery infarction epilepsy | Yes                             | Full recovery of hemipa-<br>resis, anticonvulsant             |
| 2                    | Left cerebral infarction infantile spasm        | Yes                             | Residual right hemi-<br>paresis, seizure free on<br>follow-up |
| 3                    | Epilepsy mild MR, autism, ADHD                  | No                              | Anticonvulsant                                                |
| 4                    | Moderate MR                                     | No                              | -                                                             |
| 5                    | Epilepsy                                        | No                              | Anticonvulsant                                                |
| 6                    | Autism                                          | No                              | -                                                             |
| 7                    | Mild MR                                         | No                              | -                                                             |
| PS                   |                                                 |                                 |                                                               |
| 1                    | Epilepsy                                        | No                              | Anticonvulsant                                                |
| 2                    | Borderline IQ                                   | No                              | -                                                             |
| 3                    | Moderate MR, autism                             | No                              | -                                                             |
| 4                    | ADHD                                            | No                              | Psychostimulant                                               |
| 5                    | Migraine                                        | No                              | Antimigraine medication                                       |



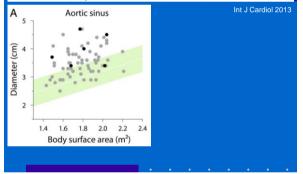




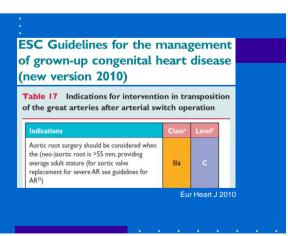


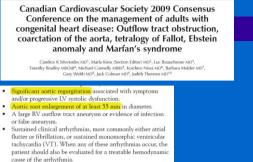

| •<br>•                        |                                      |
|-------------------------------|--------------------------------------|
| Unknown                       | 18 (29)                              |
| Heart failure                 | 18 (29)                              |
| Arrhythmia                    | 4 (6)                                |
| Post-transplant               | 4 (6)                                |
| Cardiac arrest                | 4 (6)                                |
| Cerebral event                | 3 (5)                                |
| Trauma or suicide             | 3 (5)                                |
| Sepsis or respiratory failure | 3 (5)                                |
| Pulmonary embolism            | 2 (3)                                |
| Acute myocardial infarction   | 2 (3)                                |
| Systemic lupus erythematosus  | 1 (2)                                |
| Total                         | 62 (100)                             |
|                               | Dennis et al. J Am Coll Cardiol 2018 |



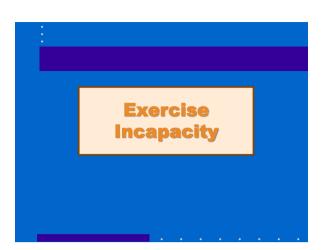


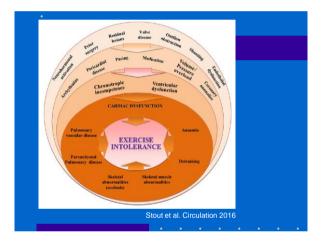


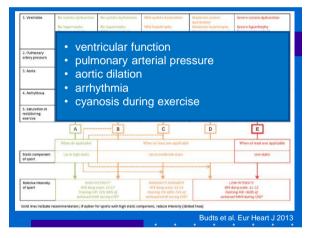




Outcome in adult patients after arterial switch operation for transposition of the great arteries

Aleksander Kempny \*\*\*, Kerstin Wustmann \*, Francesco Borgia \*, Konstantinos Dimopoulos \*.b, Anselm Uebing \*, Wei Li \*, Sylvia S. Chen \*, Adam Piorkowski \*, Rosemary Radley-Smith \*, Magdi H. Yacoub <sup>†</sup>, Michael A. Carcoulis \*\*D, Barry F. Shore \*, Lorna Swan \*, Certard-Faul Diller \*\*



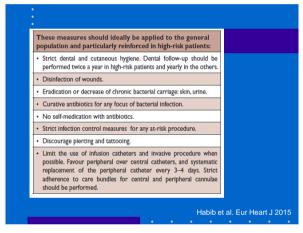




- patient should also be evaluated for a treatable hemodynamic cause of the arrhythmia.
   The combination of residual VSD and/or residual pulmonary stenosis and regurgitation all mild-moderate but leading to substantial RV enlargement, reduced RV function or symptoms Class IIa, level C (79,95-100)



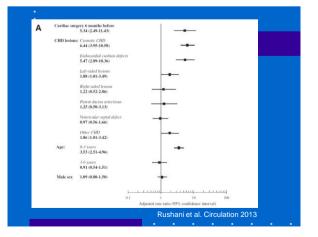


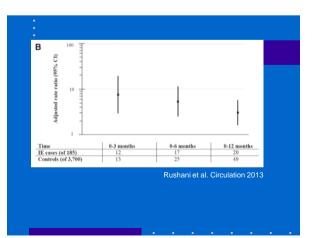


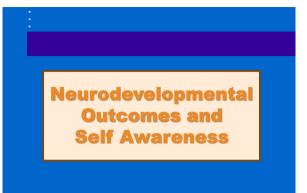


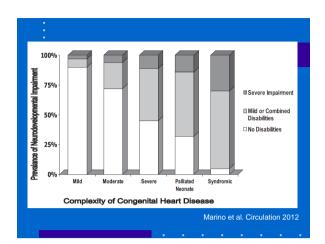

| Previous IE                                                                                                                                                                                                                                                                                                                                                                        | Prevention of Infective Endocarditis<br>Guidelines From the American Heart Association<br>A Guideline From the American Heart Association Rheumatic Fever,<br>docarditis, and Kawasaki Disease Committee, Council on Cardioloxascul<br>bisease in the Young, and the Council on Clinical Cardiology, Council o |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Congenital heart disease (CHD)*<br>Unrepaired cyanotic CHD, including palliative shunts and conduits<br>Completely repaired congenital heart defect with prosthetic material or<br>device, whether placed by surgery or by catheter intervention, during the<br>first 6 months after the procedure†<br>Repaired CHD with residual defects at the site or adjacent to the site of a |                                                                                                                                                                                                                                                                                                                |   |
| Completely repaired congenital heart defect with prosthetic material or<br>device, whether placed by surgery or by catheter intervention, during the<br>first 6 months after the procedure†<br>Repaired CHD with residual defects at the site or adjacent to the site of a                                                                                                         | rosthetic cardiac valve or prosthetic material used for cardiac valve repair                                                                                                                                                                                                                                   |   |
| Unrepaired cyanotic CHD, including palliative shunts and conduits<br>Completely repaired congenital heart defect with prosthetic material or<br>device, whether placed by surgery or by catheter intervention, during the<br>first 6 months after the procedure†<br>Repaired CHD with residual defects at the site or adjacent to the site of a                                    | revious IE                                                                                                                                                                                                                                                                                                     |   |
| Completely repaired congenital heart defect with prosthetic material or<br>device, whether placed by surgery or by catheter intervention, during the<br>first 6 months after the procedure†<br>Repaired CHD with residual defects at the site or adjacent to the site of a                                                                                                         | ongenital heart disease (CHD)*                                                                                                                                                                                                                                                                                 |   |
| device, whether placed by surgery or by catheter intervention, during the<br>first 6 months after the procedure†<br>Repaired CHD with residual defects at the site or adjacent to the site of a                                                                                                                                                                                    | Unrepaired cyanotic CHD, including palliative shunts and conduits                                                                                                                                                                                                                                              |   |
|                                                                                                                                                                                                                                                                                                                                                                                    | device, whether placed by surgery or by catheter intervention, during th                                                                                                                                                                                                                                       | e |
|                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                | a |
| Cardiac transplantation recipients who develop cardiac valvulopathy                                                                                                                                                                                                                                                                                                                | ardiac transplantation recipients who develop cardiac valvulopathy                                                                                                                                                                                                                                             |   |

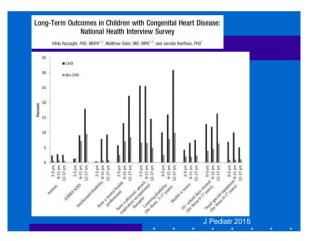
| Situation                                  | Agent                          | Regimen: Single Dose 30 to 60 min<br>Before Procedure |                   |  |
|--------------------------------------------|--------------------------------|-------------------------------------------------------|-------------------|--|
|                                            |                                | Adults                                                | Children          |  |
| Oral                                       | Amoxicillin                    | 2 g                                                   | 50 mg/kg          |  |
| nable to take oral medication              | Ampicillin                     | 2 g IM or IV                                          | 50 mg/kg IM or IV |  |
|                                            | OR                             |                                                       |                   |  |
|                                            | Cefazolin or ceftriaxone       | 1 g IM or IV                                          | 50 mg/kg IM or IV |  |
| Allergic to penicillins or ampicillin—oral | Cephalexin*†                   | 2 g                                                   | 50 mg/kg          |  |
|                                            | OR                             |                                                       |                   |  |
|                                            | Clindamycin                    | 600 mg                                                | 20 mg/kg          |  |
|                                            | OR                             |                                                       |                   |  |
|                                            | Azithromycin or clarithromycin | 500 mg                                                | 15 mg/kg          |  |
| Allergic to penicillins or ampicillin      | Cefazolin or ceftriaxonet      | 1 g IM or IV                                          | 50 mg/kg IM or IV |  |
| and unable to take oral medication         | OR                             |                                                       |                   |  |
|                                            | Clindamycin                    | 600 mg IM or IV                                       | 20 mg/kg IM or IV |  |

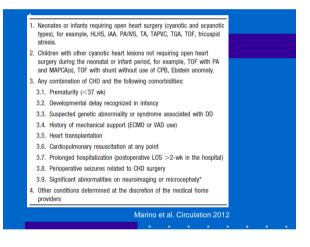

| ropean Society of Cardiology (ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                           | Endocardi                                 | tis of the                                    |                            |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------|----------------------------|-----------|
| Recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Recommend                                                                                                                                                                                                                                                                 | ations                                    |                                               | Class <sup>a</sup>         | Level     |
| Antibiotic prophylaxis should be considered for<br>patients at highest risk for IE<br>(1) Patients with any prosthetic valve, including a<br>transcatheter valve, or those in whom any<br>prosthetic material was used for cardiac valve<br>repair.<br>(2) Patients with a previous episode of IE.<br>(3) Patients with CHD:<br>(a) Any type of Cyanotic CHD.<br>(b) Any type of CHD repaired with a<br>prosthetic material, whether placed<br>surgically or by percutaneous techniques,<br>up to 6 months after the procedure or<br>lifelong if residual should or valvaliar | A. Dental procedures                                                                                                                                                                                                                                                      |                                           |                                               |                            |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>Antibiotic prophylaxis should only be<br/>considered for dental procedures requiring<br/>manipulation of the gingval or peripical<br/>region of the teeth or perforation of the oral<br/>mucosa</li> <li>Antibiotic prophylaxis is not proper period.</li> </ul> |                                           | Ila                                           | c                          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Situation                                                                                                                                                                                                                                                                 | Antibiotic                                | Single-dose 30–60 minutes<br>before procedure |                            |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                           |                                           | Adults                                        | Child                      | dren      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No allergy to<br>penicillin or<br>ampicillin                                                                                                                                                                                                                              | Amoxicillin or<br>ampicillin <sup>a</sup> | 2 g orally or i.v.                            | 50 mg/kg orally<br>or i.v. |           |
| regurgitation remains.<br>Antibiotic prophylaxis is not recommended in<br>other forms of valvular or CHD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Allergy to<br>penicillin or<br>ampicillin                                                                                                                                                                                                                                 | Clindamycin                               | 600 mg orally<br>or i.v.                      | 20 mg/l<br>or i.v.         | kg orally |

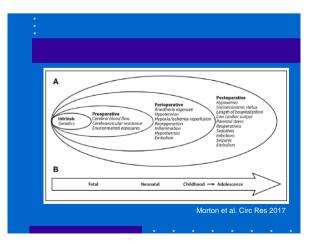


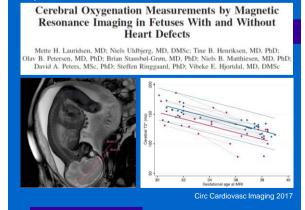





Methods and Results—We performed i population-based analysis to determine the cumulative incidence and predictors of Bi in children t0=18 years with CHD by the use of the Queece CHD Database from 1998 to 2010. In 47518 children with CHD followed for 458 109 patient-years. 185 cases of IE were observed. Cumulative incidence of IE was estimated in the subset of 43279 children with CHD followed ince birthi, in Whom the risk of IE in roll by years of gas was 6,11000 children 05% confidence interval. 50–75. In a nested case-control analysis, the following CHD lesions were at highest risk of IE in comparison with atrial septal defects (daylsed rate ratio, 95% confidence (CHD 644, 3.95–10.50), endocardial cushion defects (5.47, 2.89–10.36), and left-sided lesions (1.88, 1.01–3.49). Cardiac surgery within 6 months (5.34, 2.49–11.43) and an age of <3 years (3.53, 2.51–4.96; reference, ages 6–18) also conferred an elevated risk of IE.


Circulation 2013



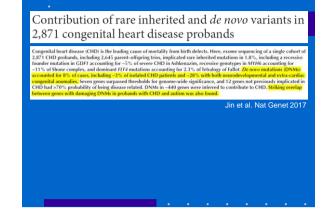



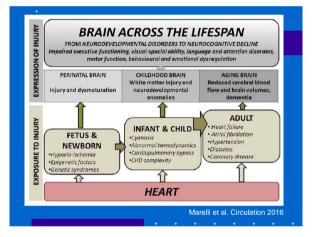



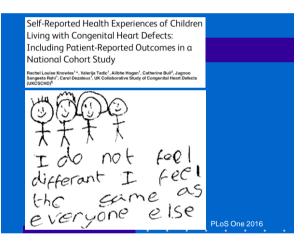


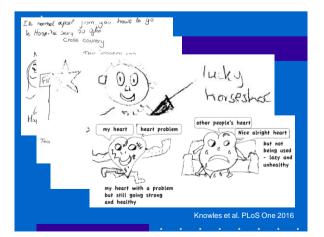






#### De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies


Congenital heart disease (CHD) patients have an increased prevalence of extracardiac congenital anomalies (CAs) and risk of neurodevelopmental disabilities (NDDs). Exome sequencing of 1213 CHD parent-offspring trios identified an excess of protein-damaging de novo mutations, especially in genes highly expressed in the developing heart and brain. These mutations accounted for 20% of patients with CHD. NDD, and CA but only 2% of patients with solated CHD. Mutations altered genes involved in morphogenesis, chromatin modification, and transcriptional regulation, including multiple mutations in *RBFOX2*, a regulator of mRNA splicing. Genes mutated in other cohorts examined for NDD were enriched in CHD cases, particularly those with coexisting NDD. These findings reveal <u>shared genetic contributions to CHD. NDD. and CA</u> and provide opportunities for improved prognostic assessment and early therapeutic intervention in CHD patients.

Homsy et al. Science 2015









#### :

- '[I] get sick of people staring at my scar, asking questions all the time'
- 'I hate going to hospital because I hate needles and doctors/nurses'
- 'you cannot play sports and are weaker slower than everyone else. . .you can get left out a lot'
- '[I] feel alone because no one has been through what I've been through'
- 'I do get very annoyed sometimes because I can't keep up with my friends'
- 'I also would love to get my ears pierced but my heart doctor advised me not to because of maybe getting an infection'
  'Being put onto Warfarin changes your life because you become
- 'Being put onto Warfarin changes your life because you become scared of getting bumped, hurt, cut, because you bleed a lot or get blood clots'

## Messages

- Significant improvement in survival of CHD patients Recognition of the needs for reinterventions Risk stratification of CHD for monitoring of long-term complications Identification and interventions for neurodevelopmental and psychological issues Monitoring of non-cardiac complications Education and transitional care of adolescent CHD patients